Производственная функция - это экономико-математическое уравнение, связывающее переменные величины затрат (ресурсов) с величинами продукции (выпуска). Производственная функция применяется для анализа влияния различных сочетаний факторов производства на объем выпуска в определенный момент времени (статический вариант) и для анализа, а также прогнозирования соотношения объемов факторов и объема выпуска в разные моменты времени (динамический вариант) на различных уровнях экономики — от фирмы (предприятия) до народного хозяйства в целом (агрегированная производственная функция, в которой «выпуском» служит показатель совокупного общественного продукта или национального дохода и т.п.).
В отдельной фирме, корпорации и т.п. производственная функция описывает максимальный объем выпуска продукции, которую они в состоянии произвести при каждом сочетании используемых факторов производства. Она может быть представлена группой изоквант, связанных с различными уровнями объема производства. Такой вид производственной функции, когда устанавливается зависимость объема производства продукции от наличия или потребления ресурсов, называется функцией выпуска.
В частности, широко используются функции выпуска в сельском хозяйстве, где с их помощью изучается влияние на урожайность таких факторов, как, например, разные виды и составы удобрений, методы обработки почвы. Наряду с подобными производственными функциями используются как бы обратные к ним функции производственных затрат. Они характеризуют зависимость затрат ресурсов от объемов выпуска продукции (строго говоря, они обратны только к производственным функциям с взаимозаменяемыми ресурсами).
Частными случаями производственной функции можно считать функцию издержек (связь объема продукции и издержек производства), инвестиционную функцию (зависимость потребных капиталовложений от производственной мощности будущего предприятия) и др.
Математически производственные функции могут быть представлены в различных формах — от столь простых, как линейная зависимость результата производства от одного исследуемого фактора, до весьма сложных систем уравнений, включающих рекуррентные соотношения, которыми связываются состояния изучаемого объекта в разные периоды времени. Производственные функции бывают статические и динамические. Статические производственные функции имеют следующий вид:
Они не включают в себя показатель времени, т.е. не содержат время как фактор, изменяющий основные производственные характеристики изучаемой зависимости. Среди статических производственных функций наиболее часто встречаются линейные функции (y = a0 + a1x1 + a2x2) и функция Кобба-Дугласа.
Динамические производственные функции имеют следующий вид:
где:
функция производства